»z FOI-R-0119-SE
A May 2001
T ISSN 1650-1942

£ SWEDISH DEFENCE

RESEARCH AGENCY Scientific Report

PB2002-104438

AR

Jonas Persson and Jan Nordstrom

Discrete Approximations of
Electromagnetic Problems

Division of Aeronautics, FFA
SE-172 90 STOCKHOLM



REPRODUCED BY:
U.S. Dapartment of Commerce
National Technical Information Service
Springfield, Virginia 22161



FOI - Swedish Defence Research Agency FOI-R-0119-SE

Division of Aeronautics, FFA May 2001
SE-172 90 STOCKHOLM ISSN 1650-1942
Scientific Report

Jonas Persson and Jan Nordstrom

Discrete Approximations of
Electromagnetic Problems

Division of Aeronautics, FFA
SE-172 90 STOCKHOLM



FOI-R-0119-SE




FOI-R-0119-SE

Abstract

In this report second and higher order methods (the Yee-method, Sum-
mation By Parts methods and Finite Element Methods) for transportation
of electromagnetic waves are compared. Tests of accuracy, long time-
integration and efficiency are performed. We show that the higher order
methods in almost every case outperform the second order methods.
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1 Introduction

Maxwells equations describe all electromagnetic phenomena including elec-
tromagnetic waves. Such waves appear in many different applications such
as microwave-ovens, cellular-phones and radar equipment. Understanding
of and ability to solve these equations is crucial when studying these ap-
plications. In most cases an analytical solution to these equations cannot
be found and numerical methods and computers must be used to find an
approximative solution.

In this report we focus on the transportation of electromagnetic waves.
Maxwells equations will be solved in time domain and one space dimen-
sion. The second order Yee-method will be compared with a second order
finite difference method (FDM) using a Summation By Parts (SBP) oper-
ator and a second order Finite Element Method (FEM). The second order
methods will also be compared with two fourth order methods, one FDM
using a fourth order SBP operator and one FEM. A sixth order FDM using
a SBP operator will also be considered.

The aim is to gain understanding and a guideline to which method to
use in future electromagnetic solvers. Real world problems usually involve
the 3D equations, however, the study of the 1D equations provide most
of the answers required for choosing a suitable method even for higher
dimensional problems. The only additional question is how to scale up the
1D efficiency to 3D. That will be dealt with in section 7.
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2 Physics — The governing equations

We are primarily concerned with wave propagation of a transverse electro-
magnetic wave in a source—free region where both the volume-density of
free charges and the density of free currents are equal to zero. We also let
the wave propagation take place in a linear, isotropic, homogeneous and
nonconducting medium characterized by the permittivity, € and the per-
meability, u. This background reduces the Maxwells equations [2] to the
following set of equations:

H
VXE:—-%}— V xH=eF (1)
V-E=0 V- -H=0 )

where E and H are vectors of the z, ¥ and z—components of the electric
and magnetic fields.

2.1 The 1D formulation

If we assume no variations in the electric and magnetic fields in the y—
and z—direction, all partial derivatives with respect to ¢ and 2z will be equal
to zero. In 3D the field intensities in Maxwells equations are coupled but
when reducing the dimension to 1D they decouple and the resulting set of
equations is:

aHy — l (6E5> 3_Ei — 1 <%> 3)
ot i@\ ox ot e\ 0z )’
o, _1( o) om _1(0B)
ot € or ot i or |’

The divergence equations (2) are meaningless in one dimension when study
ing transverse waves. Note that the two first equations, (3) decouple from

the last two equations, (4). The equations (3) are usually referred to as the
Transverse Magnetic Mode (TM) while (4) are referred to as the Trans-
verse Electric Mode (TE).

2.2 The model-problem

Since the TM- and TE-modes decouple they can be examined separately.
From here on, only the TE-equations will be examined. For simplicity
the electric field will be denoted by F and the magnetic field by H (the
component indices y and z are dropped).

In this project we consider electromagnetic waves between two perfect
electric conductors (PEC), e.g. two metal plates with infinite conduction.
From the assumption of PEC boundary conditions it follows that the elec-
tric field will be zero at the boundaries [2]. This means that we will have
electromagnetic standing waves between the two plates.

11
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2.3 Energy estimates of the continuous prob-

lem
Let us now write the TE-equations (4) on vector form:
E 0 I\ (E
(), (¢ 8) (%),
A

where A is the system matrix. The continuous energy rate is obtained
by using the energy method [4] on (5) with (E, H)*'S where S is a sym-
metrization matrix S = diag(1/p, 1/€). The result is:

~ LB+ LR IHIE = —— (BEQ) - EOHO).  ©

which will be of interest later in section 4.
The two equations in (5) can be combined to yield a second order wave-
equation

Uy = ¢*Uyy, %)

where U is either the electric field £ or the magnetic field H and the re-
lation > = 1/eu has been used. We get the continuous energy-rate by
multiplying (7) with U, and integrate over [0, 1] yielding

1d
2 dt

cd

2
T+ 5 %

1U:11* = *[UrUz]5. ®)
Note that the energy-rate involves both the time and spatial derivative of
[/. The estimate (8) will be of interest in section 5.

2.4 Electromagnetic waves
It can be shown (see [2]) that:

The tangential component of an E-field is continuous across an inter-
face between two media.

Since an electric field can not exist inside a perfect electric conductor (i.e.
E;nside =0) the electric field at the boundary of the perfect electric conduc-
tor also has to be zero. In the model problem at hand, an electromagnetic
wave impinges at normal incidence at the boundary. Since the electric field
is zero at the boundaries, the reflected wave and the impinging wave must
have equal magnitude and opposite sign at the boundaries resulting in a
standing wave between two perfect electric conductors.[2]
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3 The Yee—scheme

Figure 1. The Yee-molecule.

In 1966 Kane S. Yee introduced a finite-difference-scheme for solving the
Maxwells equations that has been extensively used ever since. It is usu-
ally referred to as “The Yee Scheme” or the “FD-TD-scheme” [12]. The
scheme proposed by Yee uses a staggered grid in both space and time and
is, according to Yee, particularly good for the case with the electrical field
equal to zero at the boundary. It uses central leap-frog difference approxi-
mations and is second order accurate in both space and time. The resulting
time-stepping algorithm is non-dissipative, i.e. the amplitude of the nu-
merical solution will neither grow or decay. [10]

Using a staggered grid means that electric and magnetic field intensities
from “half-steps” in the grid are used for the calculations. They are coupled
and E-values are used to calculate H-values and vice versa.

The Yee scheme in 1D is:

ntl ntd
E_Tl+1 _ En 1 Hi++—1—2 - Hi—+f
B VA v ©
n+% _ n—% n
oy Ty 1EL B i=1,... N (10)
At o Az T

GKS-analysis [4] will be performed to analyze the stability of the Yee-

i =2 n+ 3
"""""""" G OF
OH
m Il P
0 == 1 5
------------- T

scheme to ensure that the boundary condition E' = 0 does not introduce an
instability in the scheme.

3.1 From the Yee scheme to the discretized
wave-equation

To avoid making GKS-analysis on the staggered grid, the Yee scheme is
reformulated as two “two-way wave equations”, one in E and in one H.

13
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Using equation (9) and (10) we get the normal second order accurate cen-
tral discretization of the wave equation uy; = c?u,,. We can solve for
either F or H and get:

E?’+1 - 2En En = CZ)\Z(E::,]_ - 2Ezn + Ezn—l)7 (1 1)

HPH - 2HT + HP V= EXNX(HD, —2HP + H). (12)

Equation (12) has been obtained by a transformation of the indices: j =
i+% . m=n+3 Notethat A = £ and c = _ is the speed of light
in free space.

3.2 GKS-analysis

The GKS-analysis is a general stability theory for all types of boundary
conditions. We start by investigating the difference scheme:

EM —2FE" + Er ' = PAYEY, — 2ET + EI,), (13)

with periodic boundary conditions.
We look for solutions to (13) that are “wave-like” in space and make
the ansatz:

Ezn = gne_jkxlz:iAz» (14)

where j = 4/—1 is the complex unit and £ = < is the wavenumber. Using
the ansatz (14) in the difference equation (13) ylelds

£2—246+1=0, (15)

where A = 1 — 2c?A2sin? ("AT) Equation (15) has a solution of the form
¢ = A++/A? — 1. The problem (13) will have a growing unstable solution
if |£| > 1 which can only happen if |A| > 1. But|A4| > 1 require <! > 1.
This proves that the difference scheme (13) is stable with pCI‘lOdlC bound-
ary conditions under the condition:
A
At < =2 (16)
c
and we can continue with the GKS-analysis.
The wave-equation with PEC boundary conditions is:

Ef*t - 2B} + BTV = AN (B, - 2B] + ElLy) (17)
Er=0 (18)
~=0. (19)

For the analysis we also require £ € £,(0, 1).
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We do the ansatz: (i.e. a discrete Laplace transform of the discrete prob-
lem)

E' = ", (20)

The Godunov Ryabenkii condition [4] state that a necessary condition for
stability is that no solution with |z| > 1 exists. With the ansatz (20) in (17)
we obtain:

(Z — 1)2Ei = 62/\22(Ei+1 - 2Ei + Ei—1)~ (21)

Equation (21) is the so called resolvent equation which have a solution of
the form:

Ei = af %{ + a.f %g 22)

where o and of are coefficients to be determined by the boundary condi-
tions. 3¢, and sz, are solutions to the characteristic equation:

su(z —1)% = AN2(3c — 1) (23)

Here |56;] < 1 and |2c5| > 1. This is realized through the following argu-
ment. With 3z = " we have the same characteristic equation as in the
case with periodic boundary conditions and || = 1. However, we can’t
have solutions z with |z| > 1 since that scheme is stable. This means that
the characteristic equation have no solutions with |z| > 1 |»| = 1. s s
a function of z and the characteristic equation (23) can be written on the
form 32 + Asc + 1 = 0. This means that 55,2, = 1 and thus we must have
|31 < 1and |56] > 1.

3.3 Halfspace problems

For the analysis we now divide the problem into two separate parts. One
examining (0 < 2 < 00), here called “The right half-space problem” and
(—oo < z < 0), “The left half-space problem™.

When separating the problem into two parts we must add extra bound-
ary conditions at co. By demanding

lim |ET| < oo, (24
lim |E]| < oo, (25)

we obtain unique solutions to the halfspace problems.

Consider the right half-space problem, 0 < z < co. Since we can’t al-
low the solution of the resolvent equation (22) to grow as 1 — oc, because
of the condition (24), we must have 0f = 0 since |s| > 1. The solution
to the resolvent equation is therefore E; = of .

If we now transform the boundary condition (18) we have:

15
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The only solution for |z] > 1 0 < || < lisof = 0. Hence F; = 0 and
the right half-space problem is stable. Let us now consider the left half-
space problem, —oco < z < 0. Now ¢ must be zero since otherwise s
grows as ¢ — —oo. This means that the solution to the resolvent equation
is B; = o .

The transformation of the boundary condition (19) yields:

Ey=2"Ey=2"0ls) =0 =of=0,

for |z| > 1 and |s2| > 1.

3.4 A borderline case

It is necessary to check the borderline case |z| = 1 and |»| = 1 carefully.
Solving the characteristic equation (23) for «(z) yields:

mg=1+(ﬂ*nitJ(L+&_ly)?—L (26)

2¢2X2z 202022

Equation (26) have two possible double roots. The first one is z = 1
(= s = 1) which is a double root to the characteristic equation (23).
The other one is z = 1 — 2¢2A? & i2cAv/1 — c2A2 where |z| = 1 and
3 = —1 = |5| = 1. In any case, the solution is of the form:

Ei = (Cl + ZCz)%Z (27)

Non-growing solutions require (see (24) and (25)) Cs = 0.
First we consider the right half-space problem, 0 < x < oo0. The
transformed boundary-condition is now:

El = 2"Ey = 2"Cisd =0 = Cy =0
Now consider the left half-space problem, —oo < x < 0. In this case:
EY = 2"Ey = 2"Cy3) =0

which implies that C'; = 0. The above analysis (section 3.3 and 3.4) shows
that there are no solutions to the resolvent equation with |z| > 1, hence the
discretization (17)-(19) is stable.

3.5 Stability in the H-field approximation

It was previously shown that it is possible to obtain a discretization with
second order central difference approximations of the wave equation, in
both the E- and the H-field. In the E'—case there is a "natural” boundary
condition stating that £ is zero on the boundary. When studying the H—
field there is no such "natural” boundary condition. One way to introduce
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the boundary condition £ = 0 in the H-field is to use the original Yee—
molecule (in this case a discretization of H; — — %Er) with E equal to zero
on the boundary. However, this introduces the E—field in the study of the
H-field, which complicate the analysis. But there is a way, using the fact
that the F—field is zero on the boundary, to eliminate the E-field from the
artificial boundary condition in H.

Note that from here on we are using the H-indices, i.e. H-values have
integer indices and E-values are at “half”-positions.

3.6 The boundary condition in H

A natural way to impose a boundary condition on the H—field would be
to use the Yee-molecules (9) and (10), here in H—coordinates. This an
example demonstrating the idea on the left boundary:
m m m+1/2  m41/2
H — H} _1E1/2 EZ

At T e Az ) (28)

Take equation (28) in a previous time step and subtract from the equation
itself. The result is, using that £_; » = 0 (on the boundary)

1/2 —-1/2
H[r)n-%—l _ 2H6n + Hén_l _EEIT/I-; /2 E17T}2 1,

At T e Az ’ 29)
We now use the other Yee-equation
By - BN mp o mp 50
At T oou Az

Solve for 773 /% — E7*/% in (30) and use that expression in (29) yielding:

H'™ - 2HE' + Hi"™' 1 HY' — HY
At? pe  Arz

3D

With the same kind of derivation it is easy to show that the boundary con-
dition (34) below is equivalent to the Yee-scheme on the right boundary.

3.7 GKS analysis of the H-field approxima-
tion
The derived wave-equation including boundary conditions is:
H]’-”‘+1 —2H" + H]T””I = CQAQ(H}L -2H"+H")) (32)

HP Y — 20 + H'7 = EXN(HP — HY) (33)
HY™ = 2HT + HY™' = SN (HY_, — HY) (34)

17
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Vj=1,..., N — 1. For the analysis we also need that lim |H}| < co and
j—co

lim |H}| < co. In the same way as for the E-field, the difference equa-
j—=—oc
tion (32) is stable with periodic boundary conditions under the condition
(16).

We make the Laplace ansatz:

H;n = ZmHj

corresponding to the discrete Laplace-transform and have the resolvent
equation.

(z = 1)2H; = AN2(Hyy — 2H; + H;_y). (35)
For z : |z| > 1 the resolvent equation have a solution on the form:
Hj =0 + 07 »d,
where s¢; and 3¢, are solutions to the characteristic equation:
sz — 1)% = EN%2(5c — 1)2. (36)

Note that [551]| < 1 and |sr2| > 1 with the same argument as in the analysis
of the E-problem (see section (3.2)).

3.8 Halfspace problems

Since our problem has both a left and a right boundary we divide our
analysis into two parts, one concerning 0 < z < oo and one concern-
ing —oo < x < 0. We must prove stability for both these problems to have
stability in the region 0 <z < 1.

First consider the right half-space problem. The boundary condition at
infinity forces us to let the constant of to be zero since s, will grow when
J tends to infinity. So the solution is : ﬁj = of 5. Transforming the
boundary condition (33) yields:

of((z -1 =Nz — 1)) =0 37

which is also referred to as the determinant condition.

Assuming off # 0 in eq. (37) we can solve for » and use in eq. (36).
The result is: (z — 1) = 0 which is not fulfilled if iz] > 1. This means
that the Godunov Ryabenkii condition [4] is fulfilled. For the case z =
1 = 3 =1 we perform a perturbation analysis by letting 2 = 1 + ¢ and
»x =1+ e€ineq. (36), where d > 0 and the sign of € indicates which s« we
have. The result is

52 = 2\%e2, (38)

which unfortunately gives no information about .
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Figure 2. The unit circle with a
small circle of racius r at z =
in the complex plane.

\4

Next we choose z = 1 + 6, § = re¥, where 7 € Rand —7/2 < 6 <
7 /2 so that we are outside |z] = 1 (see fig. 2 ). The angles § = 7/2 and
6 = —n/2 are good approximations when r — 0. Solving for s in the
transformed boundary condition (37) leads to

52 , 220
=14 —=——~1 O/eNV =14+ ——
» +02A2(1+0) +(8/cA) + a0 (39)
where the ~ means a linearization. This means that we have
9 r 4 r 2
14 () +2(5) cos20) (40)

When letting r — 0, |2} < 1if cos(26) < 0. With the previous restriction
on # we now find that |s¢| is greater or less than one depending on where
in the complex plane we are, see fig. 3. We realize that [5¢| > 1if —7/4 <
6 < m/4 and we have discarded these s because of the boundary condition
at infinity. The dangerous values of z are the ones with |2| > 1 and |»| < 1,
these could be potential instabilities.

The €(0) that was used in the perturbation analysis can now be identi-
fied in (39) as 2c = 1 + (3/cA\)? = 1 + €;(8) where €,(4) is the function of
¢ that fulfills the boundary condition. Using this ¢, and z = 1 + ¢ in the
perturbation analysis performed earlier yields

=N = 1= (0/cA)?

which is absurd as § — 0. This means that there is no solution with |z| > 1
and |»¢| < 1 and the right half-space problem is stable.

For the left halt-space problem we consider the characteristic equation
(36) and the boundary condition (34). The boundary condition at infinity
forces us to let O’f{ = 0 since 5, will grow when j tends to minus infinity.

19
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Figure 3. The small circle of
radius r in the complex plane
. The areas for || < 1 and
[2¢] > 1.

20

|2| < 1
|3 > 1
\ /4
—r/4
|5 <1

This means that the solution is: H; = o4 3. Transforming the boundary
condition (34) yields the determinant condition:

o ((z = 1) — EX22(1 — 35)) = 0. (41)

Dividing equation (41) by ¢, yields the determinant condition

ol ((z=1)? = c®X%2(36, 1 — 1)) = 0 which is the same as for the right half-
space problem except that s, is replaced by s¢; L. Letting H ;=085 I =
ol (5;')” and j tends to infinity we realize that the analysis will be the
same for the left half-space problem as for the right half-space problem,
showing that also the left half-space problem is stable.

We have now shown that the two difference approximations (17)-(19)
and (32)-(34) are stable. Since these approximations were derived di-
rectly from the Yee-scheme without any approximations or interpolations
we conclude that the corresponding problem with the Yee-scheme is also

stable.
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4 Summation By Parts

4.1 The Semi-Discrete Problem

Using the symmetrization matrix S from section 2.3 and introducing a vec-
torw = (E H)T for the unknowns and letting SAw = Aw = F(z) trans-
form the continuous system (5) to

The Summation By Parts (SBP) method [7] is a way of constructing an op-
erator for the discretization of the numerical first derivative % 1n equation
(42). 1t is constructed in such a way that it mimics the integration-by-parts
property in the continuous case (see section 2.3). The spatial operator is
introduced as:

Du= P 1Qu (43)

where Du is an approximation of £ E or £ H and P and () are matrices.
If a spatial operator is of the form (43) and the conditions (¢) and (i¢) below
are full-filled, the operator is referred to as a SBP operator.

(7) The matrix P is symmetric, positive definite and bounded, Azpl <
P < Axql, where p > 0 and q are bounded independent of V.

(#4) The matrix @ is almost skew-symmetric with the property:
Q + QT = diag(-1,0,...,0,1).

We introduce the discrete versions of the vectors of unknowns and matrices
in equation (42) by letting

S=(Iy®S) F=(Iy®Au (44)
U = (EO HO E1 H1 E2 H2 s EN HN )T (45)

where S is the discrete version of S and F the discrete version of F. This
yields the semi-discrete equation:

Sus+ (P'Q® L)F = 0. (46)

4.2 An example of a second order accurate
SBP-operator

In the case of a second order operator, the matrices P and () are:

1 0 -

1\
B (=D [
Ol

[N
O
Mt

o= .
1t |

Ko+

21
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The resulting discrete operator (P71Q ® I,) is:

(—2020
0 =20 2 0
-10 0 0 1 0
0-10 0 0 1 0

i 1
-1 == — . . . . .
(P Q®IZ)-2A$ . . B . .
0-10 0 010
0 -1 0 001
0 -2 020

-202

The fourth and sixth order accurate operators are more complex and can
be further studied in [7].

4.3 Strict stability

By multiplying equation (46) by u” (P ® I,) from the left hand side and

adding the transpose of the resulting equation, we get

uT(P® L)Su; +uT (Q @ L)F +ul S(P @ I)u+ FT(QF ® I)u = 0.

The two terms with time derivatives form the time derivative of a norm, i.e.
T & TG d (75 d 2
u'(P@ I)Sui+ufS(P@ L)u= % (u $(P®bL)u) = ~llulfpes)

Note that S(P® ) = (In®S)(P®1,) = (P®S) and that (PR L) (Ix ®
S) = (Iy ® S)(P ® I3). The matrix .S is diagonal with elements strictly
positive and P is positive definite so (P ® S) truly defines a norm.

Using our definition of F in (44) and letting B = Q + Q7 we have:

d - 2
EEHuH(zP&S‘) =—u'(B® A)u = "‘E_LZ(ENHN — EyHy)

which corresponds to the continuous energy rate in equation (6).

4.4 SAT boundary conditions

Instead of imposing the boundary conditions directly (which might destroy
the SBP property) the SAT (Simultaneous Approximation Term) method
will be used [1]. An extra term, proportional to the difference between
the discrete value and the boundary term, is added to the operator and the
differential equation can then be solved in all points, also at the boundaries.
The extra term does not lower the overall accuracy since it vanishes upon
substitution of the exact value.
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Let the boundary conditions be arbitrary in the first part of the deriva-

tion:

uo = go = (9o gor)” and uy = gy = (gne gnvm)”

Note that one can only impose one boundary condition at each boundary,
e.g2. gop Or goy at the left boundary. The resulting SBP-formulation in-

cluding the SAT term for boundary conditions is

Suy + (P'QR L)F = (P71 @ A)My(u — (Wy ® o)) +
(P 1@ A)My(u— (Wy ® gn)),

where

00 0
‘Mo = . . . &® (UL1 0
: o 0 oL, (2x2)

(N+1)x(N+1)

(8 on)
IR, (2x2)

(N+1)x(N+1)

My =

-0 o o ©

(N+1) (N+1)
The vectors are defined as:
u = (ug, uy, Ug, - cun)t and  w; = (B Hy).

The energy method applied to equation (47) leads to,

4
dt

lulltpas) = —uT(B® Ay (In & A)Mo(u — (Wo ® o)) +

(47)

(48)

(49)

(50)

+uT (Iy ® AYMx(u— (Wy @ gx)) +

+(U - (VV() by go))T.]WOT(I\ & A)U +
+(u— (Wy ® gx))TMEI(Iy ® A)u.
ShH

The sparse structure of the matrices results in only a few non-zero elements
from the SAT-terms in equation (47), actually there are just two non-zero

23
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elements in each term.
Letting

OL,
M, = <m 56‘ ) be the upper left (2 x 2)-matrix in (Iy ® A) M,
en

IRy o
My = (ff_l. 5(’)‘ ) be the lower right (2 x 2)-matrix in (Iy ® A)Mx

e

and using that B = @ + QT we have that equation (51) becomes

d A . N
EHUH(ZP@S) =ug (A + Mo + My Jup — up(A — My — MY)uy (52)

- UgMogo - goMOT’U,O - U%MNQN - gNMﬁuN.

Since we can not impose more than one boundary condition at each bound-
ary we must now let one of o, and o, at the left boundary and one of o,
and op, at the right boundary be zero. This means imposing a boundary
condition on either E' or H at each boundary. The first two terms in (52)
are indefinite and can be eliminated if

S 1 0 140y, +0
T _ = L, L, —
A+ Mg+ MT = ” <1+aL1 or, 5 ) 0 (53)
A-dty -G =1 0 hmommom) g (s
N N_E;,L 1—0’31—0'1{2 0 e

In the model-problem we only have boundary conditions on the electric
field £ and thus o, = og, = 0 is an appropriate choice of two of the
penalty parameters. Equation (53) and (54) then force us to let oy, = —1
and og, = 1. The remaining terms in (52) become,

- 0 0 1
—ug Mogo = — (Eo Ho) (_ 1 0) <g0E> = —HOQOE = 0.

@ doH

_—HAQNE =0,

fi

—uvaMNgN - _ (EN HN) ( ) (QNE

gNH

——H\ 'INE = 0.

5 0—_1
—go My uo = — (goE gon) ( 6“) ( > —HOQOE =0,

—gnMiuy = — (9nE 9vH) ( ) (

since £ = 0 at the boundary, i.e. gog = gy = 0. The energy rate is thus
identical to zero and there is no dissipation. Note that the boundary terms
gom and gy g do not appear in the remaining terms.
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4.5 Time integration method for the SBP

For the second, fourth and the sixth order accurate SBP-operator in space,
the classical fourth order Runge-Kutta method was used for the time inte-
gration (see any textbook in Numerical Analysis).
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5 Finite Element Methods

Maxwells equations can be combined to yield the two-way wave equation
Ut = €*Ugg, Where u is either the electric field E or the magnetic field H.
This is easily done by first taking a spatial derivative of the first equation
and a time derivative of the second equation in (4).

Now we want to formulate a FEM approximation for the two-way
wave-equation:

Up = CPUgy ze[0,1] t>0
w(0,8) = u(l,t) = 0 (55)

u(z,0) = sin(2mnz) , w(z,0) =0

where n is the number of wavelengths in the domain and the intialdata are
derived from the exact solution u(z, t) = sin(27nz) sin(27nt + 7 /2).

5.1 Continuous case — a variational formula-
tion

To construct a continuous variational formulation of the wave equation in
(55) let V be a linear space:

V' = {v :v is a continuous function on [0, 1],
v' is piecewise continuous and limited function on [0, 1].
Andv(0) = v(1) = 0}

Now multiply the wave equation in (55) with a test function v € V and
integrate over [0, 1].

1 1 1
/ vupdr = / VP Uppdr = —C° / VU dT (56)
0 0 0

We introduce the notation
1
/'uwd:v = (v, w)
0

so that equation (56) becomes
(v,up) + vz, u) = 0. (57)

The continuous Variational formulation can be stated as:

Find u € V such that
(58)
(v, ug) + (Ve up) =0 Vo €V
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5.2 A semi-discrete approximation

Perform a semi-discretization in space by introducing a linear subspace
Vi. To create the linear subspace V,, C V (e.g. using piecewise linear
polynomials) we introduce basis-functions ¢;(z) € V. The subspace V;, is
spanned by {p; }i=1... .~, i.e. V} is a linear subspace of V' of dimension N.

A function v-€ V), can be expressed as a linear combination of the basis
functions:

v(z) = z@(pl(:c) z €10,1].

A finite dimensional variational formulation is

Find u, € V3 such that:
(59)
(’07 (uh)tt) + 02(v$a (uh)z) =0We Vi.

Equation (59) is true Vv € V}, and thus also true for all p; € V},, i.e.
(i, (un)ee) + (@i)as (un)2) =0 Vi=1,... N. (60)

V, is spanned by the basis function ¢; and if u, € V4, u), can be obtained
as

N
un(z,t) = Y &ips(x),  &(1) = unlz;,t). (61)
=1

and we have
N

Z(fj)tt(%a%‘) +sz§j((¢i)z, (pj)z)=0 Vi=1,... ,N (62)

j=1 =1
since the basis-functions are time independent. Equation (62) defines a

system of equations and can be written as
Mé&y + K& =0, (63)

where M;; = (s, ;) and Kij = ((0i)a, (95)2)-

5.3 A second order approximation

When constructing basis—functions for a second-order approximation on
an equidistant grid, first order polynomials suffice. Letz; : ¢=0,... ,N+
1, define the nodes and let £; define the spaces between the nodes, h; =
T; — Tij—1 . i=1,“.,]vv+1.

The basis-functions are, see fig. 4,

T—=Ti-1
e Tie1 ST S

pi(z) = i=1....N. (64)

Tig1 =T . ,
oy i <r < T
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Figure 4. Basisfunctions for a
second order approximation.

/]
hi hity
Ti—1 I; Tit1

The basis—function ¢; is 1 in z; and 0 in the other grid-points. To fulfill
the boundary—conditions we omit the left- and rightmost basis—functions
©o and @y 1. The basis—function ¢ and ¢y, will then naturally be zero
on the boundary and can therefore be excluded from the calculations. The
derivative of the basis—functions are:

hit oz <z<m
oi(z) = i=1,...,N. (65)
~h! T; < < Ty

31

Because of local support of the basis~functions ¢; and ¢!} the structure of

Figure 5. Basis-functions and Pi-1 @i Pit1
overlap
/ /A\ /\
SN\
\/ \
\
\ \\
\/ \ \
[ LN N
Ti-2 Ti-1 T; Ti+1 Tit2
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the Matrices M and K will be tridiagonal with the non-zero elements:

1 Tit1
Hie= / pipide = / Gigidr = bt + hiy
0 Zi—1
T4 T

(66)

Kii1=Ki ;= / o pidr = / —hi'hiNdz = —h7t. (67)

Ti-1 Ti-1

For an equidistant grid, the matrix K is:

2 .10 ...0
-12 -10
Ko_pa| 012 -1
: ST 0
-1 2 -1
0 ... 0 -1 2

The nonzero elements in the matrix M are:
1 Tifl h h
' i+1

Mii = /‘Pi%dﬂf = / pipidz = — + —
0

3 3

x; Ty

Mij 1= M;1;= / Yi-1p:dT = / (z; — ) (z — i) =

2
h"i
Ti1 i1

The matrix M for an equidistant grid is:

2 30 .0

S
M="103 2 3

o2

0... 0 32

Note that both K and M represent the spatial operator in the inner part of

0,1].

In this section we have so far discretized space and kept time continu-

ous. The result is a system of ordinary differential equations.

Méy +PKE=0.

(70)

By multiplying equation (70) by ¢ and using the structure of M and K

and (61) we get:

d , c2d 5
Ll + S = 0

o=
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which corresponds to the continuous energy rate in (8).

A second order time-integrator is needed for the time-integration of
the second order FEM-approximation. From here on we denote £ by u
and choose the “standard” second-order central difference approximation
to integrate uy, in time, ie. (u™™ — 2u" + U /A ~ uy. A fully
discrete version of equation (55) with ¢ = 1 (a scaling of € and y ) is then:

n+1 n n—1

M QA“tf” + K" = 0. 71)
Since the system defined by (71) is symmetric and tri-diagonal there are
fast solvers available. Gaussian elimination can be performed without row
or column pivoting since the matrix M is diagonally dominant. First the
system is converted to upper-triangular form and then one forward- and

one backward-substitution is needed. For details see e.g. [5].
To determine the stability region, we write (71) on a one-step form, i.e.

M 0\ (u*"! 2l — A’K —M u”
o) (e)-C ) e
N mn” ~
=M =K
un+1 SR u”
( un ) _\‘M K, (un—l> . (73)
SN—_—— =A
=[/n+1

Suppose A is diagonalizable with A = XAX ™! for a diagonal matrix A
and a set of eigenvectors X, equation (73) then becomes

Urtl = XAXTIU™ = XA X0 (74)

and we see that the eigenvalues to A must be distinct and < 1 for stability.

To find the eigenvalues to A, let an eigenvector be (a.b)? with a and b
being vectors of length IV that correspond to the size of M and K. The

eigenvalue-problem is then

AN (2I — APM'K)a—b= la
A (b) =A (b) < {Ia = b, (73)

Using equation (75) we find that

~APM Ko = (A + 1 2)a (76)
e

where —pu is an eigenvalue to —A¢* M ' K. The eigenvalue-problem (75)
for the matrix in (73) has been transformed to the smaller eigenvalue prob-
lem (76) for the matrix M~ K. From (76) we have

-1 _H AN
Me=1-54 (1 2) 1. an
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The eigenvalues A can be either real or complex depending on the sign of

(1 - %)2 —1=C. Weobserve that C' < 0in 0 < p < 4, which implies
|A| = 1 which is permitted for stability reasons. Let us now study the
absolute value of A; and A; in u=[-0.5, 4.5]. Fig. 6 show that outside

2 T T T T
TR ;
ot

Figure 6. The absolute value of
A1 and As. 3
:

1.51
!

IA

5% 1 2
7
0 < p < 4 we have |A| > 1 for one of the two roots. We also note that
u=0= A=1landpy =4 = XA = —1. 4 > 0 must hold since
At*eTKx = pa" Mz, 2T Kz > 0 and 7 Mz > 0 for an eigenvector z.
Conclusion: 0 < p < 4 = py is required for || < 1 and stability.

To find an estimate of the stability limit we must estimate the largest
eigenvalue p of At? M1 K. To get an idea we assume that the problem is
periodic (a major simplification) and study how the matrices M and K act
on a vector u. We do the ansatz: u; = €% 4(t). For any row j in the inner

part of M and K, we have
N
Az
Z Mﬂul = —B—(Uj_l/Q + 2u]~ + Uj+1/2) =
=1

= uj%(2+cos(kll$)) j=1,...,N

al 1
ZKlel = —(—Uj_l + 2Uj — uj+1) =
=1 9 AI

u;(1—cos(kAz)) j=1,... ,N.

T Az
Note that the two matrices have the same eigenvectors « . This means that

they can be diagonalized simultaneously in the same basis of eigenvectors.
If we let X be a set of such eigenvectors we have

MX =AyX = JM:XA]\,[X_I
KX =AxX = K= XA]{X_I,

and thus M 'K = XA} Ax X~ where Ay, and A are diagonal matrices
with the eigenvalues of M and K respectively. Note that A,; = é31(2 +
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cos(kAz)) and A = 2 (1 — cos(kAz)) and the eigenvalues 4 are then

_ (1—cos(kAz)) 6 (1—cos(kAz))
a AT(Q + cos(kAz))  Az? (2 + cos(kAz)) (78)

58

Maximum of (78), fmaz, 18 327 when cos(kAz) = —1. For stability we
must have At fnee < phos 1.€.
2
A gy o Bt L
Az? Az ~ /3

The stability criterion for the second order FEM approximation with peri-
odic boundary conditions give an estimate of the timestep one can use in
the non-periodic case.

5.4 A fourth order approximation

To achieve a fourth order approximation in space, Lagrange interpolation
polynomials of order three has been used as basis-functions, see [5] .
The Lagrange interpolation polynomials for an element e can generally

be written as:
o (z—35)(x — x5)(x ~ 79)

(a5 — a3)(zf — a5)(a% — a5)
(z— f)(e — a§)(z — )
(a5 — a)(xs - a5)(a — o5)
(x - a)(e - §)(z — 25)
(25 — a)(x5 — 3) (a5 — =3)
(v — 29)( — 5)(z — a5)

(a5 — 03) (g — 25) (5 — 75)

ez

14

€3 __

€4 __

We let the finite element e be specified by four nodes at equidistant dis-
tance. On every element there are four basis-functions each having the
value 1 in one node and the value zero in the other nodes. The Lagrange
interpolation polynomials have exactly this property. Note that a third or-
der polynomial is uniquely determined by the specification of four points.

In figure 7, the four basis-functions are displayed. The nodes are lo-
cated in [-1 -1/3 1/3 1] and we see e.g. that basis-function 1 have the value
one in -1 and is zero in -1/3, 1/3 and 1.

The next step is to compute the matrix elements in the matrix /. Since
the basis-functions are local to each element we first compute a local ma-
trix M; and then use the assembly technique (see e.g. Claes Johnson [6]) to
form the matrix M. We compute, for each basis-function, the contribution
from the basis-function overlapping itself and the contribution from the
basis-function overlapping the other basis-functions on the element. The
matrix K is computed in the same way as M by first computing a local ma-
trix K; where the matrix elements are the contributions from the derivatives
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Figure 7. Basis-functions of or-
der 3 scaled to range from -1 to
4

34

Basis—function 1

Basis—function 2

0.8

0.6

04

0.2

-0.5

-0.2
-1

-0.5

Basis-function 3

0.5 1 -1

-0.5

Basis-function 4

0.8
0.6
0.4

0.2

-0.2

-0.5

-05

0.5 1 -1

of the basis-functions overlapping themselves and the other basis-functions
of the element.

When an equidistant grid is used all local matrices will be the same.
The products of the Lagrange interpolation polynomials (and the product
of the derivatives of the polynomials) can be integrated exactly. This was
done in [5] and the result is used in this work. The local M; and K-
matrices for element e are:

jl‘wel @eldﬂ: jl' (1061"062 j' (1081 (1063
0 0 0

1 1
[zt [ [
0 0

= 3Az

1680

140
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1 1 1 1
bf PSSt Of @S g Of Q= pEs a[ Qe pts
1 1 1 1
Tosres [ o2 [ e [ et
0 0 0 0

1 1 1 1
bf P 2! Of P23 pe2 bf perpes [ peapes
0

1 1 1 1
f(pae;x ;1 f(p?(pgz f 502.4@;3 f<p;4(p;4
0 0 1} 0

37 —189 27 13

10 40 20 40

—189 54 —297
1 40 5 40

Mlm
(=N

BAT | 2r 207 54 -—189
0 40 3 40

-13 27 189 37
40 20 40 10

The four times four matrices are then assembled to form the matrix M
and the matrix K by adding the local matrices into the global ones. The
local support of the basis-functions yield a seven-diagonal structure of M
and K (see figure (8)). Note that the basis-functions ¢! and * have
the value one at the boundary of the element and will be connected to the
surrounding basis-functions and that M and K are symmetric matrices.

Figure 8. Structure of M and K 0 . Structlure of al22~no<‘ieexeinrpleMo'erat'rix
for a 22 node example. « o o
2 .
* e s o L]
aF e o o @
e« o o »
6} e 0 0 0 0 0 0
L L] L]
B_ L N ) L
LN * @ * o o
10F e & o o
o & & o
12. L] ® 6 & o o o
® ¢ o o
14+ e o & o
® & & & 8 » o
16~ e o o @
e o & o
18- ® e s o o o
i L] . @
Zoi— e o0
0 2 4 6 8 10 12 14 16 18 2‘0
nz =92

The result is the system of ordinary differential equations:
MUtt + Ku =0, (79)
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where u is a vector of the unknown E-values. Note that the boundary
condition, £ = 0, is imposed by removal of the outermost basis-functions
(we have only 3x3 blocks in the left upper and right lower corners of M
and K). This is sufficient since the other basis-functions in the outermost
finite elements are zero in these gridpoints.

A fourth order accurate time integrator is needed to match the fourth
order accurate finite element spatial approximation. We have chosen to use
the Numerov method as described in [9]:

Muyy = F(y) (80)
R yn+1 _ 2yn + yn—l 1 1 B 5
= — F n+ n—1 — n R
M ~ 5 F@+F™) + cF@")

The Numerov method is implicit but it adds no extra complexity to the
scheme since the finite element approximation in space also requires the
solution of a system of equations. The numerov method (80) applied to
equation (79) yields:

At? 5A¢t? At?
(M + =5 K)u* = (2M -~ K) u™ — (M + 1—21()) u™
— -
=A -

=1

(1)

This defines a system of equations which are solved by first rearranging
the terms in (81):

A (Ung1 + Up—1) =11 (82)
| S ———
=vs
and then solving (82) for v, and extracting w, .1 as Uy 1 = ~Up_; + Va.

Solving for v, in (82) is the most costly operation and must therefore
be optimized as much as possible. The matrix A is symmetric and posi-
tive definite, since it is the sum of two positive definite matrices. It can
therefore be Cholesky factorized into an upper and a lower matrix G, i.e.
A = GGT [3]. The Cholesky factorization of A is performed once as an
initial step in the computations. Forward and backward substitutions give
the vector v,. Because of the sparse structure of the matrices only the seven
non-zero diagonals are stored in a matrix with seven columns and routines
to do sparse matrix-vector multiplication were implemented.

It is necessary to find some kind of estimate on the restrictions on the
time-step At in relation to the space-step Az to achieve stability. Equation
(81) on one-step form 1is:

M+A42K 0\ (urth) _
0 IJ\uw )~

; ) 83
:(QM—E’%LK —(M+%K)><u"> ©
U

I O n-1
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With

At? -1\{9 _ 5ae? — n+1
B= ((M+ 12 K) }(HM 6 K) 0.[) .’ (Uun ) — ,U‘n+1 (84)

we can rewrite equation (83) and get v"*! = Bo™.
The eigenvalues of the matrix B will set the stability criterion for the

o . T
time integration. Let (a b) be a vector composed of the vectors @ and b.

We have that
a a
B (b) = (b) (85)

From equation (84) and (85) we geta = Ab and

1\ (11, .,
(2-2-1) o= (Haeuk)a
-

=p

Note that 41 is the eigenvalue to 13 At> MK and that the eigenvalues are

the same as in the analysis of thé second order time integrator and we can
use the result that the largest eigenvalue is obtained for 0 < p < 4.

An estimate of the largest eigenvalue of M 1K = le—?M ~1K is needed.
In the “tilde”-matrices, Az has been factored out. Numerical tests for finer
and finer gridresolutions has been performed and indicate that the largest
eigenvalue is close to 18.9026. We combine this result with the upper limit

1 < 4 to obtain

At 48

— <) 0.48.
Ax 11 % 18.9026 0.48

This is a stability criterion for the fourth order FEM approximation with the
fourth order Numerov time-integrator with periodic boundary conditions

and give an estimate of the time-step one can use in the non-periodic case.
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6 Numerical experiments and results

6.1 General remarks and definitions

Throughout this section the following notation for the different programs
will be used:

e YEE for the second order Yee finite difference program

e SBP2 for the second order summation by parts program

SBP4 for the fourth order summation by parts program

SBP6 for the sixth order summation by parts program
e FEM2 for the second order finite element program
e FEMA4 for the fourth order finite element program

Note that for SBP2-SBP6, the fourth order accurate Runge-Kutta method
was used for the time integration. The expression PPW [8], should be read
as Points Per Wavelength and is a way of expressing how many points that
is used for each wavelength. Unless stated otherwise the expertments have
been performed with five wavelengths inside the computational domain
[0,1].

In all experiments a scaled norm of the error has been used to evaluate
the results from the different methods,

lu — || = v/(u—v)TA(u — v)

where u is the numerical solution and v is the exact solution projected onto
the grid. In the YEE method the matrix A is the identity matrix scaled with
Azr. In the summation by parts methods, A is the matrix P (see section
4.2). For the FEM methods the matrix A is replaced by the matrix M (see
section 5.3 and 5.4). From here on the above stated measures of the error
in different norms will be referred to as “the norm of the error”.

For each method, there is a bound on the allowed time-step for stability,
see table 1 . The relation between the bound on the time-step and the time-
step actually used in the calculations is usually referred to as the CFL-
condition (Courant-Friedrichs-Lewy). E.g., CFL.=0.9 means that the time-
step used is 90% of the largest time-step allowed for stability. For the
YEE method the stability limit is determined by the limit in the analysis
of the periodic problem (see section 3.2). For the finite element methods,
estimates of the stability limits are derived in sections 5.3 and 5.4. The
stability limits for the SBP methods were determined using the stability
limitations of the fourth order Runge-Kutta time-integrator and an estimate
of the largest eigenvalue of P~1() (see eq. (43)).
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Table 1. The allowed timestep
due to stability limits.

Figure 9. Left: Yee with spatial
step-length «. Right: SBP2 with
spatial step-length 5.

Table 2. Equivalence between
YEE and SBP2 in the spatial di-

mension.

Method | (At/Az) <
YEE 1
SBP2 1.97
SBP4 1.11
SBP6 0.72
FEM2 0.58
FEM4 0.48

6.2 Equivalence between YEE and SBP2

The Yee scheme and the second order accurate SBP scheme are equivalent
on the semi-discrete level, when using twice as many points in the SBP
scheme as in the Yee scheme. In fig. 9 the Yee-molecule is used on the
left side and the second order SBP-operator (D)) is used on the right side
to calculate the next H-value. A test was performed using a small At to

OFO ﬂio O E
Q

a
— 2 Y

eliminate the temporal error and the calculation was terminated at 7' = 1.
The result is presented in table 2.

# Points | Max Norm YEE | # Points | Max Norm SBP2
100 8.5¢-2 200 8.8¢-2
200 2.1e-2 400 2.2e-2
400 5.2e-3 800 5.5e-3

From table 2 we see that the spatial discretizations seems to be equivalent.

6.3 Order of accuracy

To check the order of accuracy in time we keep Az constant and let " =
Upor + C1AZP + CyAt9. We use the formula

>

£ €T t
AnAL A,

_ qu. v

1 _ %

> w

. At
Al,'g—

kN

U

where the spatial parts have canceled out and q is the order of accuracy in
time. For the second order methods YEE and FEM2, g is near 2 and for
SBP2, SBP4, SBP6 and FEM4 ¢ is 4.

The order of accuracy in space was investigated by examining how the
norm of the error behaves as the resolution in the domain is increased. A
series of tests was performed and the norm of the error was plotted as a
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Figure 10. Order of accuracy
is determined. CFL is 0.9 for
all methods except FEM4 and
SBP6 which have CFL=0.1

P

Norm of error

— yee
108 H— sbp2
—= fem2
—*— fem4
~$~ sbp4
-~ sbpb
107°H % slope 2
—A— slope 4
—— slope 6

#Nodes

function of the number of grid-points in the computational domain. Figure
10 show that all methods have the expected order of accuracy. The CFL-
number was 0.9 in all calculations except for the SBP6 and the FEM4
cases. In the SBP6 case, a low CFL-number is used to remove the temporal
errors introduced by the fourth order Runge-Kutta method. The FEM4
method show a super convergent behavior for low grid resolutions (50-100
grid-points, sixth order in space). For really small Az, the fourth order
accuracy in space was verified.

Note also the increase in accuracy with the higher order methods com-
pared to the lower order methods. It takes at least four times as many
grid-points with a second order method to achieve the same error as with a

fourth order method.

6.4 Brakedown

When propagating electromagnetic waves over long distances, it is impor-
tant to know how many grid-points must at least be used without loosing
all information in the wave.

To answer this question, the “Brakedown” tests below were performed.
The idea behind these tests was to let an electromagnetic wave propagate
a certain distance (calculations were performed to T = 1) and use fewer
and fewer grid-points in the computational domain until the method brakes
down and the error is too large for the result to be useful. The norm of the
error is plotted for each resolution. Note that in figure 11 the YEE method
is plotted with the number of E-nodes used for each wavelength. If one
would plot the YEE method in the same figure but count both £ and H-
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Figure 11. Brakedown of the o Decreasing PPW
=
second order methods. =
-8~ farn2
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values for each wavelength, the YEE and SBP2 methods are very much
alike. It is clear though, that the FEM2 method needs fewer PPW than the
SBP2 method. In fig. 12, SBP6 and FEM4 show very low errors down to

Decreasing PPW

Figure 12. Brakedown of the o5

fourth order methods and the Rale
sixth order summation by parts 0451 - fomd
method.

o o o
o <
w o s
i
e

Norm of error
o
»

o
)
T

0.151

PPW

10 PPW but SBP4 needs almost twice as many PPW to achieve the same
accuracy. That the SBP6 is better than SBP4 is no surprise. The reason
that the FEM4 method can compete with, or even outperform, the SBP6
method is the super-convergence for few grid-points mentioned in section

6.3 above.
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Figure 13. (a) YEE 20 PPW (E-
points), (b) SBIP2 20 PPW, (c)
FEM2 20 PPW

6.5 Long Time-integration

To investigate how the norm of the error develops for large times, tests have
been performed with different grid-resolution to 7' = 100. Calculations
with grid-resolutions 20 and 80 PPW are displayed for all methods. We
measure the norm of the error and save only the maximum value as it is
increased in time. Figure 13 show that 20 PPW is not sufficient for time

Norm of error
<
Norm of error

o : z P
Time T Time T

(2) (b)

Norm of er
~——

Time T

©

integration over such long time periods as 7' = 100 when using second
order methods. YEE reaches it’s maximum error at approximately 7 =
100 but SBP2 reaches it’s maximum at approximately 7" = 6. For FEM2,
the time is approximately 7" = 20. Figure 14 show that 80 PPW does not
suffice to keep the norm of the error down. With 80 PPW, YEE can almost
keep the norm of the error below 10% at T = 100 but FEM2 and SBP2
is not even close to that level. The norm of the error increases above 10%
approximately at 7' = 20 with the FEM2 method.
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Figure 14. (a) YEE 80 PPW, ° " i !
{b) SBP2 80 PPW, (c) FEM2 80 .
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Figure 15. (a) SBP4 20 PPW, ¢
(b) FEM4 20 PPW, () SBP6 20 odl
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When using 20 PPW FEM4 and SBP6 can keep the norm of the error
fairly low (<1%) at T' = 100 but SBP4 can not do that. The norm of the
error is more than 80% at T' = 100, see fig. 15.

Figure 16. (a) SBP4 80 PPW, y1g® ' J210°
(b) FEM4 80 PPW, () SBP6 80
PPW
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With 80 PPW, SBP4 manage to keep the norm of the error below ~
103 at T = 100 but the fourth order FEM4 and the sixth order SBP6
keeps the norm of the error below &~ 107% Note that, using 80 PPW with
SBP4 keeps the norm of the error below what is achieved with 20 PPW
with FEM4 and SBP6, see fig. 15 and 16.
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Figure 17. PPW needed to keep
the norm of the error under a
specified limit during the time in-
tegration to T=1.

46

6.6 Error under a limit

In previous sections, the accuracy of the methods have been studied but
we have not yet considered the efficiency. An efficient numerical method
must produce an accurate result in a reasonable time. The experiments be-
low, (“error under a limit”), show for each method, how many PPW that is
needed to keep the norm of the error below a predefined limit. We perform
calculations with each method and increase the number of grid-points until
we can keep the norm of the error below the limit during the whole time in-
tegration. Note that the results from the YEE method is here presented with
PPW meaning the number of E-nodes that has been used per wavelength.
In the figures 17 and 18, T, denotes the CPU-time needed to achieve the
desired accuracy of 1 or 5%. Note that for low grid-resolutions the FEM4
method is in the super-convergent area. For all methods CFL=0.9 has been
used except for SBP6 were CFL=0.1 was used due to the accuracy limita-
tions of the fourth-order time-integrator.

T=1, Freq=5, CFL=0.9, Limitis 1%

— yee

Norm of error

PPW

When performing time-integration to 7" = 1 we see in fig. 17 that the
YEE method uses less PPW than SBP2 and FEM2 and the CPU-time to
achieve the 1% limit is much smaller than for the other two second order
methods. The efficiency of YEE is due to the staggered formulation of
the method. It uses only half the number of unknowns compared with the
SBP2 method. The leap-frog time integration is also more efficient than
the Runge-Kutta method used in the SBP2. The FEM2 method is quite
efficient, not close to YEE, but better than SBP2.

For the fourth order methods we see in fig. 17 that SBP4 is not as
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Figure 18. PPW rieeded to keep
the norm of the error under a
specified limit during the time in-
tegration to T=10.

fast as FEM4 (which is in the super-convergent area) or the SBP6 but we
see that it outperforms both SBP2 and FEM2. The desired accuracy is
achieved much faster than for the two second order methods. The YEE
method though is faster but uses a little more grid-points. FEM4 and SBP6
uses so few PPW that it is difficult to compare them at the time 7" = 1.

T=10

When performing the calculations to T = 10 (see fig. 18 ), we see
that the YEE method is far better than the other two second order methods,
SBP2 and FEM2. The simplicity of YEE makes it fast and the CPU-time
does not increase as much as for the other two methods. For YEE the CPU-
time increases by a factor 40, for SBP2 by 55 and for FEM2 by over 80
from the case 7' = 1 to the case T' = 10.

For the fourth and sixth order methods we see in fig. 18 that FEM4 is
again very efficient. It uses fewer grid-points than SBP6 and is faster. But
the SBP6 can not perform efficiently since we use a Runge-Kutta of order
four for the time-integration.

To make another comparison of the efficiency of the fourth order meth-
ods, an additional test has been made. By requiring an error far below the
previous used limit of 1%, at T' = 1, we force both methods to use more
gridpoints and FEM4 will then be out of the super-convergent area. The
limit chosen is a little greater than 10"
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Figure 19. PPW needed to keep
the norm of the error under a
specified limit during the time in-
tegration to T=1. Fourth order
methods
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In fig. 19 calculations have been performed to T' = 1 as in the previous
test displayed in fig. 17. Note that the CPU-times T, in fig. 19 should
not be compared with the CPU-times in fig. 17 directly since different
computers were used in the two tests. We see in fig. 19 that FEM4 needs
only 80 PPW while SBP4 needs almost 300 PPW to achieve the desired
accuracy at T = 1. The error in the finite element method is approximately
100 times lower than the error with the summation by parts method for the
same grid-resolution. This means that more grid-points are needed and
efficiency is lost. The CPU-time is more than 14 times as large for the
SBP4 compared to the FEM4 method.

As a comparison, the second order YEE method was used to achieve
the same low limit of the norm of the error. It turns out that YEE needs
more than 1600 PPW and a CPU-time over 147s to achieve this low limit.
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/ Extension to higher dimensions

As mentioned in the introduction, a 1D analysis provides most of the an-
swers required for choosing a computational method, except for the ques-
tion about scaling the efficiency from 1D to 3D. We do the extension to a
higher dimension by estimating the computational cost in arithmetic oper-
ations needed to update the unknown variables in one grid-point in a 1D
and a 3D problem. By dividing the number of arithmetic operations in
3D with the number of arithmetic operations in 1D we get a factor which
indicates how the efficiency scales from 1D to 3D, see table 3.

Since the Yee-scheme is staggered in space and time the approach has
been to calculate the cost to update the six unknowns, three of the electric
field and three of the magnetic field, that uniquely defines a Yee-cell in 3D.
In 1D, only two unknowns are unique in each Yee-cell. In the SBP finite
difference methods there are two unknowns in each grid-point in 1D and
six in 3D.

The FEM have one electric field component in each grid-point in 1D
and three components in 3D. For the Yee-scheme and SBP we can calculate
the computational cost exactly but for FEM we will make a rough estimate
of the cost of solving the system of equations arising from the implicit
formulation.

We assume a uniform grid of tetrahedras with Ny, N, and N; grid-
points in the x-, y- and z-direction respectively. Let M; = 3N, denote
the unknowns in the x-direction, M, = 3N, denote the unknowns in the
y-direction and so on. The bandwidth can be reduced from M; M, M; to
M, M, by properly numbering the unknowns. The banded system of equa-
tions that arise is LU-factorized only once at a cost of O(2npgq) arithmetic
operations, where n is the number of unknowns and p and ¢ is the lower
and upper bandwidth respectively (see [3]). In this case the number of
unknowns is M; MaM; and the bandwidth is approximately —‘% (both
upper and lower) which results in O(M; M> M3 M7 M3) arithmetic opera-
tions to LU-factorize the system. The cost of solving the LU-factorized
system in each time-step is approximately 2np arithmetic operations for
the forward substitution and 2ng for the backward substitution (see [3]).
This results in O(M; M>M; M; M, ) arithmetic operations in our case.

R N

Unknowns Bandwidth
The bandwidth is larger for third order polynomials, but differs only by
multiplication of a constant, which we will denote by . In table (3) we
have divided the cost of solving the system with the number of unknowns
to estimate the cost of updating the unknowns in one grid-point. We also
suppose that we have the same number of unknowns in each direction in
the grid, i.e. My, = My = M3 = M.

In 1D, the FEM methods give rise to narrow banded systems of equa-
tions, (seven non-zero diagonals in the FEM4 case), which explain the low
number of arithmetic operations needed to update one grid-point.
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Table 3. The number of arith-
metic operations needed to up- Method | 1D 3D Factor
date one grid-point indicating YEE 6 36 6
the efficiency when scaling from SBP2 38 258 6.8
101030 SBP4 | 54 | 402 7.4
SBP6 70 546 7.8
_ FEM?2 18 O(MZ) O(Mz)
FEM4 | 114 O(aMz) O(Oth)

For the FEM method a direct LU-solver was considered in the 3D case.
However, if a good preconditioner can be found, an iterative solver could
improve the efficiency of 3D FEM in table 3.
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8 Conclusions

For second order methods, SBP2 cannot compete against the other two sec-
ond order methods neither if the criteria is accuracy nor efficiency. FEM2
and YEE are equally accurate but YEE would be the final choice because
of better efficiency.

For fourth order methods FEM4 is almost a factor 100 more accurate
than SBP4. When FEM4 is in the super-convergent area it can compete
with SBP6 in accuracy. The FEM4 method is also more efficient than
SBP4 outside the super-convergent area.

Higher order methods produce more accurate results than second order
methods when using the same number of PPW. Higher order methods are
also better at transporting waves using low PPW numbers for long time-
integrations. YEE can compete in efficiency with higher order methods
for short time-integrations and high accuracy limits. With a low accuracy
limit, the higher order methods outperform YEE.

In 3D the FEM is less efficient than the other methods due to the im-
plicit formulation which results in a large system of equations that must
be solved using direct methods. With an efficient iterative solver, FEM
may be able to compete with the other methods because of its supreme
accuracy.
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Appendix A

Kronecker product

Definition 1 Let A be a p x q matrix and let B be an m x n matrix, then

CLO’QB e ao‘q_lB
A®B = oo (86)
CLp_ly()B T ap_l,gB

The p x q block matrix A ® B is called a Kronecker product.

There are a number of rules for Kronecker products, see [11], we will
present some of them. Let A, B, C and D be matrices of arbitrary sizes,
such that the specified operations are defined.

(A® B)(C @ D) = (AC) ® (BD)
(A+B)®C=AQC+B®C
(Ao B = AT ¢ BT (87)
(A®B)'=A"g B!
A>0, B>0=(A®B)>0
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